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Abstract. Under the action of a high applied electric field, the non-equilibrium electron gas
in a lateral superlattice exhibits the properties of a ferroelectric. That it is in principle possible
for a transverse electric field to appear spontaneously as a result of a non-equilibrium phase
transition is established. A theory of electron ferroelectricity taking into account the interaction
of charge carriers with acoustic phonons is constructed.

1. Introduction

The main feature of the new kinetic effect considered in this paper consists in the following.
If the sample is open-circuited in the OY -direction and the constant current (jx) flows in the
OX-direction, then, upon lowering the temperature (T ), a spontaneous transverse electric
field (Ey) appears. It is seen thatEy ∼ ±

√
TC − T , where the ‘Curie temperature’TC is

determined by the value of the applied field|Ex |. Under these conditions, second-order
non-equilibrium phase transitions (NPTs) occur. If the sample is closed-circuited in series
with some finite resistor in the OY -direction, then, upon lowering the temperature, first-order
NPTs (accompanied by jumps in the value ofEy) are also possible. This situation is quite
similar to that of the appearance of spontaneous polarization in ferroelectrics. Thus, from
the phenomenological point of view, the non-equilibrium electron gas represents a peculiar
ferroelectric. The necessary condition for the existence of such ferroelectricity is the non-
additivity and the boundedness of the electron energy spectrum. Examples of materials
in which this effect is possible include the lateral (quasi-two-dimensional) superlattices
(SLs) [1, 2].

When one uses a tight-binding approximation, the electron energy spectrum with respect
to the principal axes (‘1’ and ‘2’) of a simple quadratic SL has the form

ε(p) = 1− 1
2

(
cos

p1a

h̄
+ cos

p2a

h̄

)
(1)

where 21 is the allowed miniband width,p1 andp2 are the Cartesian components of the
carrier crystal momentum (p), anda is the lattice constant.

When using a reference frame with coordinate axes which are at an angle (θ ) to
the principal axes of the SL, the spectrum becomes non-additive:ε(p) 6= ε(px) + ε(py),
i.e. the condition given above holds.

In papers [3–5], applying to the spectrum (1) andθ = 45◦, the fieldEy as a function of
Ex has been calculated, the sample temperature being fixed. Note also the papers [6, 7], in
which the influence of a magnetic field on the spontaneous transverse field forT = fixed
was investigated. In [3–7], the problems have been solved by using the Boltzmann kinetic
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equation with theτ -approximation, and also the simplest case, that withτ = constant,
has been considered. In the present paper, devoted to the calculation of the temperature
dependenceEy = Ey(T ) in a lateral SL forEx = fixed, we go beyond the limits of the
τ -approximation and consider a non-equilibrium electron gas with spectrum (1) interacting
with acoustic phonons at low temperaturesT � h̄ωD (whereωD is the Debye phonon
frequency, andT is the temperature in energy units) in an arbitrary electric field. We
assume that 21� h̄ωD.

2. Current density in a lateral superlattice

As is known from the theory of small-radius polarons [8], for conductors with narrow
electron energy bands the linear (with respect to displacements) interaction of electrons
with the acoustic phonons proves to be significantly weakened because of the smallness
of the parameter1/h̄ωD � 1. Under these conditions, the dominant role is taken by
the quadratic interaction [9, 10]. ForT � h̄ωD, the probability of electron scattering
is small, and the mobility is described by a kinetic equation which, under the condition
T � s|p| (where s is the sound velocity), leads to the Fokker–Plank equation. For the
system considered, this equation has the form [10]

γE
∂f

∂p
= h̄
a

∂

∂p

(
1

T
vf + ∂f

∂p

)
(2)

wheref (p) is the distribution function,e is the electron charge,v = ∂ε/∂p is the electron
velocity, and

γ−1 = (2π)5

60ae
h̄ωD(qDa)

8

(
C2

Ms2

)2(
T

h̄ωD

)9

. (3)

HereqD = ωD/s is the Debye phonon wave vector,M is the mass of the elementary cell,
andC2 is the deformation potential for the quadratic interaction.

Because of the additivity of spectrum (1), the variables in equation (2) may be separated;
thus we find its solution in the form

f = g(p1)g(p2) (4)

whereg(p) is the solution of the equation

γE
dg

dp
= h̄
a

d

dp

(
1

T
vg + dg

dp

)
(5)

with

v(p) = 1a

2h̄
sin

pa

h̄
. (6)

Following [10], we assume that

g = χ(p) exp

(
1

2T
cos

pa

h̄

)
.

This substitution leads to an equation for the functionχ :

γEχ − h̄
a

dχ

dp
= C exp

(
− 1

2T
cos

pa

h̄

)
. (7)
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The periodic solution of (7) may be found in terms of Fourier series. The resulting solution
of equation (5) has the form

g(p) = A exp

(
1

2T
cos

pa

h̄

) +∞∑
m=−∞

(−1)m

γE − im
Im

(
1

2T

)
exp

(
im
pa

h̄

)
. (8)

Here Im(z) is the modified Bessel function, andA = A(E, T ) is the normalizing constant
which may be found from the condition∑

p

f (p) = n (9)

wheren is the carrier density. Note that asE → 0 the functionf (p) takes on the form of
the equilibrium distribution function

f0(p) = nI−2
0

(
1

2T

)
exp

{
1

2T

(
cos

p1a

h̄
+ cos

p2a

h̄

)}
. (10)

The current density is defined by the expression

j = e
∑
p

v(p)f (p). (11)

Taking into account (4), the formula for theα-component of the current density (α = 1, 2)
takes the form [10]

jα = jα(Eα, T ) = ea

2πh̄

∫ πh̄/a

−πh̄/a
v(p)g(p) dp

= enaT

h̄

+∞∑
m=−∞

(−1)mim

γEα − im
I 2
m

(
1

2T

)/ +∞∑
m=−∞

(−1)m

γEα − im
I 2
m

(
1

2T

)
. (12)

From (12) it follows in particular that forE � E0 and1� T the electron mobility∼T −10.
This asymptotics has been obtained in [11] by another method.

Let us introduce the reference frame with the coordinate axes OX and OY which are
at an angle 45◦ with the principal axes of the SL. In such a reference frame, the electron
energy spectrum becomes non-additive:

ε(p) = 1−1 cos
pxd

h̄
cos

pyd

h̄

(
d = a√

2

)
. (13)

Using the formulae for coordinate transformations affected by the rotation of the
coordinate axes, we get the expression for the current densityj = (jx, jy) in the new
reference frame. In the following, we go over to dimensionless variables:T/1 → T ,
h̄j/en1d → j, E/E0→ E, where

E0 = (2π)5
√

21

60ae

(
C2

Ms2

)2(
a1

h̄s

)8

. (14)

Using (12) and the identity

I 2
0 (z)+ 2

∞∑
m=1

(−1)mI 2
m(z) = 1 (15)

we finally get

j x
y
= T

2

[
j0

(
Ex + Ey
T 9

, T

)
± j0

(
Ex − Ey
T 9

, T

)]
. (16)
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Here

j0(x, T ) = x
(

1− 1

ψ(x, T )

)
(17)

and

ψ(x, T ) = I 2
0

(
1

2T

)
+ 2x2

∞∑
m=1

(−1)m

m2+ x2
I 2
m

(
1

2T

)
. (18)

3. Non-equilibrium phase transitions

Let the sample be closed-circuited in series with some finite resistorR in the OY -direction.
For this electric circuit we have

jyr ≡ jy + rEy = 0 (19)

where

r−1 = SRen1d/(h̄LE0). (20)

HereL is the sample length in the OY -direction, andS is its cross-sectional area.
For given Ex , T , and r, condition (19) represents an equation for the function

Ey = Ey(Ex, T ). In addition to the trivial solution (Ey = 0), this equation also has
non-trivial ones (Ey 6= 0).

It is useful to investigate the stability of the transverse fieldEy (i.e. of the solutions
of equation (19)) with respect to small fluctuations, using the function (the synergetic
potential) [3, 4]

8(Ex,Ey, T ) =
∫ Ey

0
jyr (Ex, E

′
y, T ) dE′y + constant (21)

by means of which the Kirchhoff condition (19) and the stability condition∂jy/∂Ey > 0
(see, e.g., [12]) may be written in the forms

∂8

∂Ey
= 0

∂28

∂E2
y

> 0. (22)

Thus, the stable solutions of equation (19) for fixedEx, T correspond to minima of the
synergetic potential8. Note thatjx = ∂8/∂Ex , jyr = ∂8/∂Ey .

Now we will discuss briefly the meaning of the synergetic potential8 (independently,
Epshtein [13] has come to analogous conclusions). The function8, equation (21), is the
power density which, as is known [14], is proportional to the velocity of entropy generation
(here, at givenEx and T ). Thus we have established that the minima of the synergetic
potential, i.e. the minima of entropy production (independently of the degree of deviation
from equilibrium), correspond to stationary stable states. So, in the present paper, a model
demonstrating the feasibility of, in principle, entropy production minima [15] leading to
stable stationary states, without any restriction on the degree of deviation from equilibrium,
has been established. Note that for the stationary (but unstable) states, the entropy production
attains its maximum.

The Curie temperatureTC = TC(Ex, r) may be found from the condition

(jyr/Ey)Ey=0 = 0

which leads to the following equation:

rT 8
C +

∂j0(x, TC)

∂x

∣∣∣∣
x=Ex/T 9

C

= 0. (23)
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Figure 1. The dependence of the Curie temperatureTC on the applied fieldEx . The curves
correspond to the following (normalized) values of the parameters: (1)r = 0; (2) r = 0.03;
(3) r = 0.05; (4) r = 0.1.

The numerical solution of this equation for different values of the parameterr is
presented in figure 1. In figure 2 the results of the numerical solution of equation (19)
at |Ex | = 0.6 and for different values ofr are presented.

At r = 0 (when the sample is open-circuited in the OY -direction), every value of
|Ex | corresponds to just one value ofTC . In this case, the character of the solutions of
equation (19) may be clarified at high temperaturesT � 1. Using (16)–(18) and the
approximationsI 2

0 (0.5T
−1) ≈ 1+ 1/8T 2 andI 2

1 (0.5T
−1) ≈ 1/16T 2, we get

jy = T 8

8

Ey(T
18− E2

x + E2
y)

(T 18+ E2
x + E2

y)
2− 4E2

xE
2
y

. (24)

Then, substituting (24) in (19), we find that, atr = 0, the non-trivial solutions have the
form

Ey = ±
√
E2
x − T 18. (25)

Substituting (24) in (21), we find the synergetic potential for the case considered:

8(Ex,Ey, T ) = T 8

32
ln[(T 18+ E2

x + E2
y)

2− 4E2
xE

2
y ] + constant. (26)

From (26) and the conditions (22), it follows that forE2
x > T 18 (T = fixed) or for

T 18 < E2
x (Ex = fixed) the solutions (25) are stable with respect to small fluctuations

of the field, and hence that the solutionEy = 0 is unstable. WritingE2
x = T 18

C , we
find thatEy ∼ ±

√
TC − T . This situation is similar to that for ferroelectric second-order

NPTs, for which the spontaneous polarizationP ∼ ±√TC − T . In our case the quantity
TC = 9

√
Ex (Ex = fixed) plays the role of the Curie temperature. Note that the transverse

field (25) coincides exactly with the expression forEy calculated independently by using
the Boltzmann kinetic equation with theτ -approximation (τ = τ0T

−9) for the collision



7000 G M Shmelev and I I Maglevanny

Figure 2. The dependence of the transverse fieldEy on the temperatureT for Ex = 0.6
(normalized). The curves correspond to the following values of the parameters: (1)r = 0;
(2) r = 0.05. The branches 2a and 2b of curve 2 show the stable and unstable states respectively.
The dashed lines define the limits of the region of first-order NPTs and near to them. The region
from T0 to T1 (T0 = 0.57, T1 = 0.744) (B⇔ T0 = 0.57, A ⇔ T1 = 0.744) defines the
corresponding values ofT , and the region from A to B on the stable branch corresponds to the
metastable states ofEy .

integral. Numerical experiments show that formula (25) gives a good approximation for
T > 2. In the general case, the same experiments, with formulae (16)–(18), confirm the
conclusion that a transverse field appears spontaneously of as a result of a second-order
NPT. In figure 2, curve 1 illustrates this conclusion for|Ex | = 0.6.

For r 6= 0, first-order NPTs are also possible. In this case, every admissible value
of Ex corresponds to two values of the Curie temperature,TC1 and TC2 (see figure 1).
The numerical analysis shows that a non-zero solution exists in the regionT ∈ [T0, TC2]
(T0 < TC1) and has two branches, one of them being stable and the other being unstable
(the analysis of the stability was performed with the help of potential (21)). In the region
T ∈ [T0, TC1], there is a temperatureT = T1 at which the local minima of the potential for
two different phases (withEy = 0 andEy 6= 0) are, by conditions (22), equal:

8(Ex,Ey, T1) = 8(Ex, 0, T1). (27)

This means that atT = T1, first-order NPTs occur. ForT ∈ [T0, T1], the local min-
imum of the corresponding potential curve forEy 6= 0 is larger then the minimum for
Ey = 0. Therefore, the interval [T0, T1] defines the region of first-order NPTs and their
neighbourhood, and the corresponding valuesEy 6= 0 on the stable branches of the solution
of equation (19) define the metastable states.

In figure 2, curve 2 represents the results of the numerical calculation of equation (19) at
|Ex | = 0.6 andr = 0.05. The region [T0, T1] defines the temperature values corresponding
to metastable states ofEy . For temperatures inside the metastable region, the hysteresis
associated with first-order NPTs occurs. For example, the transverse-field behaviour may
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Figure 3. The potential curves18 = 102(8 − 8|Ey=0) for r = 0.05, Ex = 0.06
(normalized). The curves correspond to the following values of the controlling parameter
T : (1) T = T0 = 0.57; (2) T = 0.72; (3) T = T1 = 0.744; (4) T = TC1 = 0.8;
(5) T = TC2 = 0.8815; (6) T = 0.92. The local maxima and minima correspond to the
points of intersection of theT = constant lines with the unstable and stable branches shown in
figure 2.

follow the pathT0T1BA. In terms of the synergetic potential, the situation is illustrated in
figure 3.

Let us make an approximate numerical estimate of the value ofE0. For1 = 1 meV,
a = 10−7 cm, s = 5× 105 cm s−1, and (C2/(Ms

2))2 ' 1, we getE0 ≈ 170 V cm−1.
Together with the results presented in the figures, these values indicate that the conclusions
of this paper are realistic.

Hence, the results presented reflect a number of typical features of the ferroelectricity
of non-equilibrium electron gas.

4. Conclusions

The spontaneous appearance of a transverse EMF is not merely interesting for its own
sake. It also has a number of consequences, influencing, for example, the behaviour of
galvanomagnetic [16, 17, 6, 7] and optical [18] effects, in high electric fields. Experimental
investigation of the effects including the spontaneous transverse fieldEy could make a
contribution to the physics of NPTs and give useful information about the parameters of
appropriate materials to use in electronic devices. In support of this statement, we note
the recent paper [19] in which a transverse EMF in lateral superlattices on a substrate
of GaAs/Al xGa1−xAs with a unidirectional potential modulation has been detected and
measured experimentally (the applied field was directed at an angle to the lattice axis). The
experiments described in [19] will also stimulate further theoretical analysis of the problem.
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